
Scene Classification of Multispectral
Satellite Images Using Convolutional

Neural Networks
Anusha Manur

Sri Jayachamarajendra College of Engineering

anusha.manur@gmail.com

P G Diwakar

Indian Space Research Orgnisation

diwaa6@gmail.com

August 3, 2017

Abstract

The availability of high-resolution remote sensing data has opened up the possibility for interesting applica-
tions, such as feature classification of satellite images. The aim of this work is to show how a convolutional
neural network can be applied to multispectral images to achieve this classification. This exploration uses
National Remote Sensing Centre, India (NRSC), obtained remotely sensed data. Various design choices of
the CNN architecture are evaluated and analyzed. The ROIs (regions of interest) selected, comprise of four
classes i.e. water bodies, vegetation, forest and barren land. The results show that CNNs are a viable tool for
solving segmentation tasks in the area of remote sensing.

Nomenclature

CNN Convolutional neural networks

NRSC National Remote Sensing Centre

RELU Rectified linear units

I. Introduction

Aerial and satellite imagery datasets
are a vital source of information for
observation of the earth’s surface and

is important for various application domains,
such as terrain mapping and vegetation
monitoring. An extremely large volume of
satellite image data is currently available, but
it has little meaning unless it is processed
and the required information is retrieved.
Traditional applications of satellite remote
sensing technology have shown that certain

spectral bands can be used effectively in the
identification and classification of terrain [1].
Most methods use the gray scale values of a set
of corresponding pixels taken from different
spectral bands of the same scene to determine
the type of terrain present. Fully connected
networks are used where every neuron in
one layer is connected to every neuron in
another layer. However, a single ground cover
usually occupies a region of neighboring
pixels and improved identification may be
obtained by considering an entire region rather
than a single pixel. Convolutional neural
networks include more spatial information in
the neighborhood of the pixel to be classified
[2]. CNNs use the concept of receptive fields
and shared weights and these properties allow
to achieve better generalization and lowers the
memory requirements for running the network
and thus allows the training of larger, more
powerful networks.

1



Terrain classification using CNN • August 2017 •

In this study, a thorough analysis is done
on the application of convolutional neural
networks for terrain classification. Remotely
sensed data obtained from the NRSC is
preprocessed and manually labelled. An
unsupervised K-Means algorithm is used for
this process. This data is further used to train
the CNN model and an in-depth analysis of
the model is done in terms of various design
choices. The network is fine-tuned till the
desired architecture with the best accuracy is
obtained.

II. Method

Pattern recognition approaches are commonly
deployed to recognize the underlying patterns
in remotely sensed data. In this study, the
analysis started from data acquisition, data la-
belling, pre-processing, then supervised classi-
fication by convolutional neural networks was
carried out with accuracy assessment.

The above diagram shows the adopted

method for terrain classification.

i. Hardware and Software Platform

For this study, a computer with an core i7
processor was used. No GPUs were used.
The operating system used was Ubuntu
14.04 LTS. The software platform chosen was
OpenCV, which is a library of programming
functions mainly aimed at real-time computer
vision along with Python. For installation in
Ubuntu, OpenCV is available in the Ubuntu
repository. This was used for image display
and manipulations. For implementing neural
networks, Keras was used. It is an open source
neural network library written in Python. The
library contains numerous implementations
of commonly used neural network building
blocks such as layers, objectives, activation
functions, optimizers, and a host of tools
which make working with image and text data
easier. Keras has a few dependencies which
have to be installed beforehand.

• SciPy - It is a Python-based ecosystem of
open-source software for mathematics, sci-
ence, and engineering.

• NumPy - It is the fundamental package
for scientific computing in Python. It pro-
vides a large assortment of routines for
fast operations on arrays. It is one of the
core packages of SciPy.

• TensorFlow - An open-source software li-
brary for Machine Intelligence.

ii. Data acquisition

Dataset for processing of satellite images
was taken from the NRSC repository of
remotely sensed data. The data used in this
work consists of images of patches of Indian
land. They comprise of 3 bands - red, blue,
green. The original images obtained are of
size 2264*2264 before preprocessing. The
biggest challenge is that, though there are
plenty of remotely sensed satellite image
datasets available, very few are labelled.

2



Terrain classification using CNN • August 2017 •

This is a major cause of concern as the
CNN needs a large amount of labelled data
for training to achiever better performance.
Therefore, we try to increase the size of the
dataset by generating more images from the
original data. This is done by splitting the
high-resolution images into multiple smaller
sized images. Data augmentation is done to
boost performance. More images are gener-
ated by random rotation, shifts, shear and flips.

The above is a sample image of the dataset. It
shows a part of north eastern India captured
by the Cartosat satellite launched by ISRO
in 2007. It has four classes depicted by the
four colors and is majorly covered by water
as indicated by the color blue. The hashing
of a color to every class allows easier visual
classification of the image.

iii. Data preprocessing

In this phase, the obtained images are split
to generate more images of size 205*205 each,
since the CNN model requires large datasets.
The images are then manually labelled using
the K-Means method. K-Means clustering al-
gorithm is an unsupervised algorithm and it is
used to segment the area of interest from the
background. It divides an image into a num-
ber of discrete regions such that the pixels have
high similarity in each region and high contrast
between regions. The pixel values are then cast
to floating point values and then normalized.

iv. Implementation of supervised clas-
sification using CNN

Convolutional neural networks (CNNs or
ConvNets) are designed to process natural sig-
nals that come in the form of multiple arrays.
They were inspired by biological processes
in which the connectivity pattern between
neurons is inspired by the organization of the
animal visual cortex. A CNN consists of an
input and an output layer, as well as multiple
hidden layers. The hidden layers are either
convolutional, pooling or fully connected.
CNNs take advantage of the properties of
natural signals by using local connections and
tied weights, which makes them easier to train,
since they have fewer parameters compared
to a fully-connected network and also use
relatively little pre-processing compared to
other image classification algorithms. This
means that the network learns the filters that in
traditional algorithms were hand-engineered.
More specifically, a single CNN layer performs
the steps of convolution, non-linear activation
and pooling. Firstly, the convolutional layers
apply a convolution operation to the input,
passing the result to the next layer. Each
convolutional neuron processes data only for
its receptive field. The convolution operation
reduces the number of free parameters and
hence resolves the exploding problems in
training traditional multi-layer neural network
with many layers by back-propagation algo-
rithm where every neuron in one layer to
every neuron in another layer. Next, we use
activation functions to introduce non-linearity
in the network as most real world problems
are non-linear. Activation functions cannot be
linear because neural networks with a linear
activation function are effectively only one
layer deep, regardless of how complex their
architecture is, because these layers could be
summed up to give a linear function. Finally,
we add the pooling layers. This combines
the outputs of neuron clusters at one layer
into a single neuron in the next layer. It is

3



Terrain classification using CNN • August 2017 •

common to periodically insert a pooling layer
between successive convolutional layers in a
CNN architecture. The max pooling uses the
maximum value from each of the cluster of
neurons at the prior layer and the average
pooling uses the average value from each of
the cluster of neurons at the prior layer.

The above figure [3] shows each step of con-
volution. The input image is fed to the net-
work. In the convolutional layers, the filters are
passed through the entire image to recognize
the main features and a feature map is devel-
oped. Then, an activation function function
is used to introduce non-linearity in the net-
work. A typical choice of activation function
for CNNs are hyperbolic tangent or rectified
linear units (ReLU). The pooling layer serves
to progressively reduce the spatial size of the
representation, to reduce the number of pa-
rameters and amount of computation in the
network, and hence to also control overfitting.
It downsamples the convolutional layer by com-
puting the maximum (or the mean) over a local
non-overlapping spatial region in the feature
maps.
The input to the first CNN layer consists of
images with 3 spectral bands of of size 205*205.
The full architecture consists of four stacked
CNN layers , followed by a fully-connected
(FC) layer and, finally, a sigmoid classifier.
Each convolutional layer uses a kernel size of
3*3 and an ReLU activation function. After
every two layers, a 2*2 pooling area is used
for maxpooling and a dropout of 0.25 units is

used [4]. The preprocessed images are then
pushed through the network and the filters are
learned by applying them to the entire image
and the feature map is assigned to its contex-
tual area. The parameters of the network and
the sigmoid classifier are trained with back
propagation using an Adam optimiser and a
binary crossentropy loss function. The model
is then evaluated and the training result is ob-
tained for the predefined metrics. The model
is now trained. The testing data is then pushed
through the network and the prediction is ob-
tained. The result is a vector of four values
consisting of binary digits where 1 indicates
the presence and 0 indicates the absence of a
class.

III. Results

The optimal design for the model has been
derived by analysing the effect of various
parameters.

• Number of convoutional layers
• Activation function
• Optimiser function
• Loss function
• Dropout
• Number of epochs

The labelled data consists of 211 images and
25% of it was used for testing. The optimised
model gives an accuracy of 92%.

IV. Conclusion

The study shows that CNNs can be used by
analysing various architectural parameters and
then evaluating them for multilabel classifi-
cation. It was conluded that an accuracy of
92% could be obtained with given model and
labelled input data. Future work includes im-
provement in the method of manual labelling
of input data whch will lead to better learning.
The number of input images can be increased
by data augmentation. Different kinds of input
data will enable the network to train in a more

4



Terrain classification using CNN • August 2017 •

dynamic way. This model can be improved to
obtain a pixel-level classification rather than a
feature based classification of images.

References

[1] Marco Castelluccio, Giovanni Poggi, Carlo
Sansone, Luisa Verdoliva Land Use Classifi-
cation in Remote Sensing Images by Convolu-
tional Neural Networks.

[2] Y Chen, X Zhao, X Jia SpectralâĂŤSpatial
classification of hyperspectral data based on
deep belief network. IEEE Journal.

[3] Martin LÃd’ngkvist, Andrey Kiselev, Mar-
jan Alirezaie, Amy Loutfi Classification and
Segmentation of Satellite Orthoimagery Using
Convolutional Neural Networks.

[4] N Srivastava, G Hinton,A Krizhevsky, I
Sutskever, R Salakhutdinov. Dropout: A
simple way to prevent neural networks from
overfitting.

5


	Introduction
	Method
	Hardware and Software Platform
	Data acquisition
	Data preprocessing
	Implementation of supervised classification using CNN

	Results
	Conclusion

